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SUMMARY

The main difficulty in the development of ATP antag-
onist kinase inhibitors is target specificity, since the
ATP-binding motif is present in many proteins. We
introduce a strategy that has allowed us to identify
compounds from a kinase inhibitor library that block
the cyclin-dependent kinases responsible for regu-
lating transcription, i.e., CDK7 and especially CDK9.
The screening cascade employs cellular phenotypic
assaysbasedonmitotic indexandnuclearp53protein
accumulation. This permitted us to classify com-
pounds into transcriptional, cell cycle, and mitotic
inhibitor groups. We describe the characterization of
the transcriptional inhibitor class in terms of kinase
inhibition profile, cellular mode of action, and selec-
tivity for transformed cells. A structural selectivity
rationale was used to optimize potency and biophar-
maceutical properties and led to the development of
a transcriptional inhibitor, 3,4-dimethyl-5-[2-(4-piper-
azin-1-yl-phenylamino)-pyrimidin-4-yl]-3H-thiazol-2-
one, with anticancer activity in animal models.

INTRODUCTION

Cyclin-dependent kinases (CDKs) are key cell cycle regulators

and some also have regulatory functions in mRNA transcription

at the level of RNA polymerase-II (RNAP-II) (Hirose and Ohkuma,

2007). CDKs 1, 2, 7, 8, 9, and 11 have all been implicated in the

phosphorylation of the C-terminal domain (CTD) of the largest

RNAP-II subunit (Pinhero et al., 2004), but the most important

ones are CDK7-cyclin H and CDK9-cyclin T (Ramanathan

et al., 2001). The CTD contains repeating Tyr-Ser-Pro-Thr-Ser-

Pro-Ser heptad sequences and the phosphorylation status of

the Ser residues at positions 2 and 5 has been shown to be

important in the activation of RNAP-II.

CDK7-cyclin H associates with the RING-finger protein MAT1

in the general transcription factor IIH (TFIIH) and also acts as an
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activating kinase for other CDKs. Unlike other CDKs, CDK9

appears to function exclusively in transcriptional regulation.

It forms complexes with cyclin T1, T2, or K, which participate

in the positive transcription elongation factor b (P-TEFb) (Michels

et al., 2003). CDK9 phosphorylates both Ser-2 and Ser-5 of the

CTD heptad (Pinhero et al., 2004), playing a predominant role

during transcriptional elongation, in contrast to CDK7, which

primarily phosphorylates Ser-5 of RNAP-II at the promoter as

part of transcriptional initiation (Gomes et al., 2006).

Overexpression of cyclins or suppression of CDK-inhibitory

proteins (CDKIs) is frequently observed in cancers and ectopic

expression of CDKIs in tumor cells restores cell cycle control,

leading to cell cycle arrest or apoptosis (Shapiro and Harper,

1999). However, it is now clear that many CDKs and cyclins

associated with the cell cycle are functionally redundant, which

suggests that targeting individual cell cycle CDKs may not be

an optimal therapeutic strategy (Barriere et al., 2007). The

anticancer activity in preclinical models of the experimental

CDK inhibitor drugs flavopiridol (alvocidib; Aventis/NCI) and

R-roscovitine (seliciclib, CYC202; Cyclacel) are believed to result

mostly from the transcriptional inhibition mechanism (Fischer

and Gianella-Borradori, 2005). Flavopiridol targets a number of

CDKs and other kinases, and transcription inhibition caused by

this compound in cancer cells was originally thought to be

mediated by inhibition of CDK7 (Harper and Elledge, 1998).

Recent data, however, suggest that CDK9 inhibition plays

a more important role (Chen et al., 2005). Treatment of cancer

cells with flavopiridol results in inhibition of RNAP-II CTD phos-

phorylation, thus blocking transcription and inducing apoptosis

by reducing mRNA levels of antiapoptotic proteins (Gojo et al.,

2002). Selective induction of apoptosis in transformed cells by

downregulation of antiapoptotic proteins through transcriptional

CDK inhibition has also been demonstrated for R-roscovitine

(MacCallum et al., 2005).

Clinical trials results show flavopiridol monotherapy efficacy

in hematological cancers, especially chronic lymphocytic

leukemia, which is particularly sensitive to transcriptional inhibi-

tion (Byrd et al., 2007). Many clinical and preclinical pan-CDK

inhibitor compounds are potent CDK9 inhibitors and their anti-

proliferative properties emanate from transcriptional inhibition

to a large extent (Joshi et al., 2007; Karaman et al., 2008;
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Figure 1. Identification of CDK Transcrip-

tional Inhibitors by Cell-Based Assays in

A2780 Cancer Cells

Cells were treated with test compounds or assay

diluent only (control) at 0.63 mM (A, B) or the

concentrations indicated (C) for 7 hr (A–C) or

24 hr (D). MI was measured by determining the

percentages of phospho-histone-H3 positive cells

(A). Nuclear accumulation of p53 was assessed by

immunofluorescent staining (B). Transcription

inhibitors induce a time-dependent increase in

p53 protein (C) and an apoptotic signal through

activation of caspases-3/7 (D). See also Figures

S1. Data are represented as mean ± SD.
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Wang and Fischer, 2008; Zhang et al., 2008). However, truly

CDK7- and CDK9-selective compounds have not been reported

to date (Wang and Fischer, 2008).

Here, we report the results that have led to the identification of

potent and selective new pharmacological CDK transcriptional

inhibitors from our 2-anilino-4-(heteroaryl)-pyrimidine kinase

inhibitor compound library (Wang et al., 2004a, 2004b;

Wu et al., 2003). We have developed a cell-based screening

cascade that has enabled us effectively to delineate a pharmaco-

phore subseries of compounds characterized by selective

antiproliferative effects in tumor cells through transcriptional

CDK inhibition. This cascade has permitted us to distinguish

phenotypically and biochemically compounds that inhibit

RNAP-II CDKs from those that act predominantly through inhibi-

tion of the cell cycle CDKs (1, 2, 4), or the closely related mitotic

aurora kinases. We use assays for mitotic index (MI), and p53

protein level measurements as a proxy measure for general tran-

scriptional inhibition, for initial mechanistic compound classifica-

tion, followed by more specific cell biological screens, such as

caspase-3/7 activation assays, for more detailed compound

mode-of-action analysis and classification (Griffiths et al.,

2004, 2008; Wang et al., 2004a, 2005).

RESULTS

Cellular Phenotypic Classification
The effects of treatment of A2780 (ovarian), NCI-H460 (non-small

cell lung), and A549 (lung) tumor cell lines with compounds from

our kinase inhibitor library were assessed using high-throughput

cell biological assays based on an automated microscopy

system. Among these, MI and p53 protein level assays were

found to be the most informative for classification of the library

subgroups that target the cell cycle or transcription, respectively.

Based on time-course experiments, a 7 hr treatment period with

test compounds was chosen to identify maximum effects on cell

cycle or induction of p53 protein levels. p53 expression is

regulated at the level of protein stability, and the increase in
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p53 protein levels after treatment with

transcriptional inhibitors, including flavo-

piridol, is attributed to the downregulation

of Mdm2 (Demidenko and Blagosklonny,

2004; Lu et al., 2001; Radhakrishnan and

Gartel, 2006), which is a well-established

negative regulator of p53 protein (Michael
and Oren, 2003). Compounds were typically screened using

a concentration range of 0.04–20 mM, which permitted assess-

ment of both potency and phenotypic specificity. Examination

of MI and p53 protein levels resulted in identification of three

classes of compounds: class-1 compounds decreased MI and

induced high levels of nuclear p53 protein; class-2 compounds

increased MI, but had minimal effects on p53 protein levels;

and class-3 compounds decreased MI and had minimal effects

on p53 levels. Representatives of each class of compounds

were further evaluated by enzymatic screening and cellular

mode-of-action investigations.

MI was used as an indicator of cell cycle status in unsynchro-

nized proliferating cells. Figure 1A illustrates the response of

A2780 cells and is representative across the concentration range

(the results from a primary MI and p53 screen of a set of 220

compounds is shown in Figure S1A, available online). Class-2

compounds, exemplified by a compound we have designated

MKI-1 (for mitotic kinase inhibitor), delayed cells in mitosis and

increased the overall MI of the cell population. Many of these

compounds were subsequently identified as selective inhibitors

of aurora kinases (data not shown; Wang et al., 2010). Class-1

compounds such as 1, 3, 4, 6, 7, and 14 (Table 1) decreased

MI, indicating a reduction in the number of cycling cells (Fig-

ure 1A) and increased the number of cells with high levels of

nuclear accumulation of p53, typically with a 3- to 6-fold increase

in A2780 (Figure 1B). To determine if p53 induction was a result

of a DNA damage response (Kastan et al., 1991), additional

experiments were carried out using an independent DNA-

damage response marker, phosphorylated histone H2AX

(Rogakou et al., 1998). Treatment of MCF-7 cells with either

doxorubicin, a classical DNA-damaging agent (Gewirtz, 1999),

or 1 resulted in accumulation of p53 (Figure 1c). Treatment

with 1 had no effect on the level of histone H2AX phosphoryla-

tion, which was increased substantially by doxorubicin

(Figure S1B). A likely mechanism of p53 accumulation for

class-1 compounds is reduction in the transcription and expres-

sion of Mdm2, the ubiquitin ligase responsible for degradation of
erved



Table 1. Structures and Biological Activity of Selected CDK Inhibitors

Structure

No. Formula R1 R2 R3

1 I NH2 NO2 H

N

N

N
H

R2

R3

S
N

R1

N

N

N
H

R2

R3

S
N

OR1

I II

2 I NHEt SO2NH2 H

3 I NHMe SO2NH2 H

4 I NHMe SO2NHMe H

5 I NH2 SO2NHMe H

6 I NHMe SO2Me H

7 I NHEt SO2Me H

8 I NH2 SO2NHEt H

9 I NHMe SO2-morpholine Me

10 I NH2 SO2-morpholine Me

11 II Me H SO2NH(CH2)2OMe

12 II Me CN H

13 II Me NO2 Me

14 II Me H Piperazine

No. Kinase inhibition, Ki (nM) 72 hr MTT, IC50 (nM)

CDK1 CDK2 CDK4 CDK7 CDK9 A2780 MES-SA

1 73±31 <1 19±17 73±5 4.6±5.2 41±2 140±13

2 691±81 403±29 132±53 56±24 4.5±1.4 666±106 1608±235

3 67±11 2.4±1.3 9.1±2.9 25±7 0.80±0.79 12±5 76±10

4 334±3 33±1 20±7 107±71 4.3±2.1 178±44 278±75

5 233±32 26±3 163±73 127±48 4.3±1.8 205±156 428±45

6 86±63 1.6±0.2 94±4 91±13 0.29±0.27 87±2 93±15

7 >500 7.6±1.5 139±23 47±24 0.96±0.14 101±2 50±15

8 660±353 47±16 391±50 193±13 5.9±1.5 332±13 425±65

9 >500 >500 >500 3,469±1,526 6.7±3.0 760±336 370±43

10 >500 >500 >500 304±87 8.5±1.3 692±35 169±45

11 4.1±0.8 0.11±0.05 >500 940±55 14±2 221±75 98±10

12 399±16 0.52±0.11 102±53 6.8±3.0 1.9±2.3 216±20 367±30

13 3.0±0.5 28±3 60±18 0.56±0.13 5.9±3.3 34±1 126±30

14 449±48 149±40 68±28 2.3±0.2 0.38±0.27 131±9 150±16

See also Table S1. Data are represented as mean ± SD.

Chemistry & Biology

Transcriptional CDK Inhibitors
p53 (Lu et al., 2001). Direct evidence for this mechanism was

obtained after detailed investigations with compound 14 (see

below). Nuclear p53 protein levels were subsequently used as

an indicator of general transcriptional inhibition and this corre-

lated well with biochemical selectivity for CDK 7 and 9 inhibition

(Figure 2).

The third class of inhibitors, exemplified by the compounds

designated CCI-1 and CCI-2 (for cell-cycle inhibitors) in Figures

1A and 1B, reduced MI but had no significant effect on p53

protein levels. These compounds were subsequently identified

as selective cell cycle inhibitors, which cause stage-specific

cell cycle arrest and prevent mitotic entry (Wang et al., 2005).

CDK Transcriptional Inhibitors Induce Apoptosis
in Tumor Cells
Caspases 3 and 7 are the most crucial effector components of

cell death pathways that culminate in the cleavage of a number

of important cellular proteins (Fuentes-Prior andSalvesen, 2004).
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We found that all of the compounds that we had identified as

transcriptional CDK inhibitors (class-1) were capable of inducing

a caspase-3/7 response in tumor cell lines, including A2780,

NCI-H460, MES-SA (uterine sarcoma), and HT-29 (colon adeno-

carcinoma). When, e.g., A2780 cells were treated with 1, 3, 4, 6,

7, and 14 for 24 hr, substantial induction of apoptosis was

observed, typically a >7-fold induction of caspase-3/7 activa-

tion, compared with class-2 (MKI-1 and 2) and class-3 com-

pounds (CCI-1 and 2), or controls (Figure 1D). Caspase activa-

tion was only observed in transformed lines and not in the

nontransformed fetal lung cell line WI-38, despite it being able

to activate caspases 3/7 in response to other classes of com-

pounds. In all cases, full induction of caspase activity occurred

over a narrow concentration range as an all-or-nothing response

(Figure 3A). Selective induction of apoptosis in transformed lines

was confirmed by TUNEL of A2780 and WI-38 cells treated

with compound 14. Cell-cycle arrest was not detected, and

TUNEL-positive cells originated from all stages of the cell cycle
121, October 29, 2010 ª2010 Elsevier Ltd All rights reserved 1113



Figure 2. Cellular CDK Selectivity

For each test compound the antiproliferative 72 hr

MTT assay IC50 value against A2780 cells was

divided by the Ki values against individual CDKs

(determined in biochemical kinase assays) and

the ratios were plotted. A low ratio (ratios of %1

are shown as unity for the sake of clarity) indicates

that antiproliferative activity is unlikely to be due to

inhibition of the CDK in question. It is apparent that

CDK9 inhibition is important for all transcriptional

inhibitors (1–10 and 14). No other kinase tested

shows such a correlation. Of the nontranscrip-

tional inhibitors, 11, 12, and CCI-2 show poten-

tially significant cellular inhibition of CDK9 but

these compounds also show strong activity

against other kinases. See also Figures S2.
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(Figure 3B). This was observed in all tumor cell lines testedwhere

an intact caspase-3/7 pathway was present, irrespective of

mutant or wild-type p53 status. Class-1 compounds thus lead

to apoptotic tumor cell death, and not to a stage-specific cell

cycle block.

CDK Transcriptional Inhibitor Analogs: Design and Lead
Optimization
The 2-anilinopyrimidine compounds in Table 1 were prepared

using procedures as described (Wang et al., 2004a). Previously

established SARs of a series of 2-anilino-4-(thiazol-5-yl)pyrimi-

dines with respect to CDK2 suggested the importance of substit-

uents at C2 of the thiazole ring (Wang et al., 2004a). Introduction

of amino functions in the context of either meta- or para-

substituted anilines at the pyrimidine C2 resulted in increased

inhibition not only of CDK2, but also CDK9. CDK2-bound crystal

structures of such compounds, e.g., 1, reveal that the thiazole

C2-amino group interacts strongly with the Asp145 and Lys33

side chains and enhances the hydrophobic interaction of the

thiazol-4-yl methyl group with the Phe gatekeeper residue

present in all CDKs (Phe80 in CDK2) (Wang et al., 2004a). In addi-

tion, a number of H-bonding interactions between the thiazole

C2-alkylamino groups andGln131 and Asp86 were also observed.

Substitution of the thiazole C2 with bulkier groups, such as

phenyl, pyridyl, or other heterocycles, resulted in significantly

reduced activity. The thiazol-4-yl methyl group was also found

to be intolerant of modification. Certain meta- or para-substitu-

tions of the aniline ring were well tolerated and manipulation of

these substituents led to a number of inhibitors possessing

varying CDK selectivity profiles. Similar substituents in the ortho

position abolished CDK-inhibitory activity in all cases.

Application of our screening cascade revealed that

compoundswith the transcriptional inhibitor phenotype predom-

inantly inhibit CDK7 and CDK9 and show varying selectivity

toward other CDKs, in particular CDK2 and CDK4, in enzymatic
1114 Chemistry & Biology 17, 1111–1121, October 29, 2010 ª2010 Elsevier Ltd All rights res
assays (Figure 2). A derivative with a

sulfonamide substituent at the aniline

meta position and containing a methyla-

mino group at the thiazole C2 position

(3) was found to be one of themost potent

transcriptional inhibitors in the class

(Table 1). This compound also showed
considerable potency against CDK2-cyclin E and CDK4-cyclin

D1. Furthermore, it exhibited potent in vitro antitumor activity in

a number of cancer cell lines. Replacement of the methylamino

with an ethylamino group at thiazole C2 afforded another

comparatively selective inhibitor of CDK7 and CDK9 (2),

althoughwith reducedpotency. This also resulted in a substantial

reduction in antiproliferative activity against tumor cell lines.

Methylation of the sulfonamide at the meta position of the

aniline ring (4) also reduced CDKs 9, 2, and 4 activity somewhat

compared to compound 3. Again this was accompanied by

an antiproliferative potency reduction. Analog 5, which has a

primary amino group at the thiazole C2 showed potency and

selectivity profiles comparable to 4. Similar antiproliferative

activity was observed for both compounds. Replacement of

the sulfonamide of 3 with a methylsulfonyl function afforded

another picomolar CDK9 inhibitor (6) that retained similar

potency and selectivity with respect to CDKs 1, 2, and com-

pared to 3. The structural modification resulted in 10-fold lower

activity against CDK4, however. As expected, 6 also displayed

potent cytotoxicity in cells. Keeping the aniline portion of 6

constant, but replacing the thiazole C2 substituent with the

larger ethylamino group led to 7, with 5-fold reduced inhibition

of CDK2 and 3-fold reduced inhibition of CDK9 compared

with 6. An ethyl group on the sulfonamide function (8), rather

than the methylsulfonamide in 5, in the context of the thiazole

C2 primary amine, resulted in slightly reduced potency

throughout.

In order to assess if targeting CDK9 alone would be sufficient

for a compound to exhibit the transcriptional inhibitor pheno-

type, a number of selective CDK9 inhibitors were designed.

During lead optimization, we observed that introduction of bulky

substituents at the meta position of the aniline resulted in unfa-

vorable contacts with CDK1 and CDK2, whereas simple nonio-

nizable alkyl functions at the para position were poorly tolerated

in terms of CDK4 activity. Combination of such substitution
erved



Figure 3. Selective Induction of Apoptosis

in Transformed Cells

(A) Caspase-3/7 activation assays show 14 selec-

tively to induce caspase activation in the

transformed A2780 cell line but not in the non-

transformed WI-38 line. Treatment with CCI-3

demonstrates caspase induction in both cell lines.

(B) Flow cytometric analysis was performed and

cell death (by TUNEL assay gating; ordinate) was

correlated with cell cycle stage (by DNA content

gating; abscissa). Cells were treated with assay

diluent only (control) or with 2 mM compound 14

(treated) for 24 hr. Treatment with 14 (2 mM)

resulted in 31% TUNEL-positive A2780 cells cor-

responding to all cell cycle phases, whereas

similar treatment of WI-38 cells gave rise to only

4.8% TUNEL-positive cells. See also Table S2.

Data are represented as mean ± SD.
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patterns in individual compounds led to the 4-methyl-3-

(morpholine-4-sulfonyl)aniline derivatives 9 and 10. Both com-

pounds were potent CDK9 inhibitors essentially devoid of

activity against CDKs 1, 2, and 4, while retaining modest

potency against CDK7. Application of 9 and 10 in the screening

cascade revealed that both compounds clearly belonged to

class-1. However, these compounds exhibited reduced cellular

potency in comparison to other low nanomolar Ki CDK9 inhibi-

tors, which, in contrast, were potent against one or more

additional CDKs.

Structural modification by transposition of various sulfon-

amide or alkylsulfone functions from the meta to the para posi-

tion of the aniline ring generally resulted in somewhat reduced

potency against all CDKs except CDK2. Thus, compound 11,

although active against CDK9, inhibits CDK2 with almost

100-fold higher potency. However, having achieved optimal

CDK9 selectivity over CDK2 and CDK4 with compounds such

as 9 and 10, we turned our attention to CDK7 inhibition. We

discovered that a number of compounds with a 3H-thiazol-2-

one (formula II in Table 1) rather than a thiazole (formula I) system

at the pyrimidineC4 displayed enhanced potency against CDK7.

This was especially true for analogs with amethylated thiazolone

N3 and small electron-withdrawing aniline meta substituents,

such as 12. Addition of amethyl group at the aniline para position

again improved selectivity and also afforded our most potent

CDK7 inhibitor compound 13.

As noted above, bulky aniline para substituents were not

conducive to CDK9 selectivity. If, however, substituents con-

taining an amino group that is charged at physiological pH
Chemistry & Biology 17, 1111–1121, October 29, 2010 ª
were introduced at the para position in

the context of the pyrimidinyl C4 thiazo-

lone system, both CDK7 and CDK9

potency was preserved, while maintain-

ing selectivity with respect to the other

CDKs to some extent. The representative

compound in this regard is 14, which

potently inhibits not only CDK7, but

also CDK 9. CDKs 1, 2, 4, on the other

hand, are inhibited at least 30-fold less

potently.
Compound 14was also assessed for its selectivity in a panel of

closely related non-CDK kinases. The results in Table S1A show

that a range of kinases are inhibited by 14 at the mid-nanomolar

to low micromolar IC50 level. Considering the fact that 14 is

a mid-picomolar IC50 CDK9 inhibitor and comparing with the

non-CDK kinase inhibited most potently (VEGFR2 IC50 =

180 nM), this gives a selectivity of at least 400-fold. This

compound was also passed through a more extensive protein

kinase panel that contains kinases representing most signaling

pathways. The results again show that certain non-CDK kinases

are inhibited by 14, but at concentrations several orders of

magnitude higher than those relevant to CDK7 and CDK9 inhibi-

tion (Figure S1C).

Compound 14 was further assessed for its biopharmaceutical

properties (Table S1B): it has low lipophilicity (logP = 1.1) and

good aqueous solubility. Membrane permeability was moderate

with a Papp value of 2.43 10�6 cm/s byCaco-2monolayer assay.

Furthermore, 14 exhibited good in vitro metabolic stability with

a half-life of 50 min and low intrinsic clearance in a liver micro-

some assay. Plasma protein bindingwas also low (36%unbound

fraction). In order to confirm this, 14 was subjected to rat

pharmacokinetic (PK) analysis following a single intravenous

(i.v.) dose of 5 mg/kg or an oral (p.o.) dose of 50 mg/kg. Mean

plasma concentrations were used to calculate the PK parame-

ters (Table S1B). The compound was found to be orally bioavail-

able (F = 70%) with a plasma half-life of �5 hr following p.o.

administration, and a large volume of distribution. The exposure

values obtained show that multiples of in vitro bioactive concen-

trations can easily be achieved at good dose potency.
2010 Elsevier Ltd All rights reserved 1115



Figure 4. Structural Basis for Compound CDK Selectivity

Electron density (gray mesh) and two plausible binding conformations (green and cyan CPK sticks) each for 14 (A) and 11 (B) (contoured at 1.2 and 1.0 s, respec-

tively) in the complex crystal structures with CDK2 (gray CPK surface). Observed interactions of 11 (C) and 14 (D) with the ATP-binding site of CDK2 (gray),

corresponding residues from an aligned structure of a catalytically competent CDK2-cyclin A-ATP/Mg structure are shown (PDB #1QMZ; salmon). Broken lines

indicate energetically favorable (magenta) and unfavorable (black) interactions (distances are indicated in Å). Superimposition of the CDK2-14 complex (gray) with

a CDK9 (PDB #3BLR; salmon; E) and a CDK7 crystal structure (PDB #1UA2; salmon; F). The rmsd for the alignment of the CDK9 and CDK7 with the CDK2-14

coordinates (all atoms/ATP-binding site) was 2.39 Å/0.78 Å and 1.65 Å/0.92 Å, respectively. For data collection and refinement statistics of the X-ray crystal struc-

ture complexes of CDK2 with compounds 11 and 14 refer to Table S3; PDB #2XMY and 2XNB.
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Structural Rationale for Potency and Selectivity
of Transcriptional Inhibitors
In order to determine the basis for the selectivity and potency of

CDK7 and CDK9 inhibitors, we determined complex crystal

structures with CDK2 for compounds 11 and 14 (Figures 4A–

4D). Furthermore, we used published X-ray crystal structures

of CDK7 (Lolli et al., 2004) and CDK9 (Baumli et al., 2008).

The CDK7 and CDK9 selectivity of compound 14, which

contains a piperazine substituent at the aniline para position,

can be rationalised by the replacement of Lys89 in CDK2 with

smaller residues in CDK7 and CDK9 (Figures 4E and 4F). Our

CDK2-14 complex crystal structure reveals that the bulky

piperazine ring results in unfavorable contacts with the Lys89

side chain (Figure 4D). As a result, this side chain is forced to

change position from that observed in apo- and ATP-bound

CDK2 structures (Brown et al., 1999; Wu et al., 2003), which is

energetically unfavorable. On the other hand, modeling suggests

that the residues corresponding to Lys89 in CDK2, i.e. Val100 in

CDK7 or Gly112 in CDK9 can better accommodate the piperazine

ring of 14. The complex structure of compound 14 with CDK2

and homology modeling with other CDKs further indicate that

electrostatic charge differences at the ATP-binding site of

CDK1 and CDK2 with respect to CDKs 4, 7, and 9 play a signifi-

cant role in the selectivity of this compound. Because CDKs 4, 7,

and 9 all have a nonionizable side chain in the Lys89 position,

there is less repulsion with the positive charge on the piperazine

ring (McInnes et al., 2004).
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For compound 11, which, unlike the piperazine ring of

compound 14, has a flexible sulfonamide substituent, the situa-

tion is different. Here the p-anilino sulfonamide can be observed

tomake strongH-bonding interactionswith the side-chain amino

group of Lys89 in CDK2 (Figure 4C). Similar interactions are not

possible with CDK7 and CDK9, where small lipophilic residues

are present in place of Lys89.

The selectivity of the methylsulfone compounds 6 and 7

derives from differences in the residues that correspond to

Gln131 in CDK2. This is Ala153 in CDK9, which is capable of

forming favorable van derWaals contactswith the sulfonemethyl

groups. The increasing CDK9 selectivity of compounds 4, 5, and

8–10, on the other hand, can be explained by the increase in

steric bulk of the extensions of the sulfonamides at the aniline

meta position. As we have shown, compounds with small aniline

meta substituents, e.g., the nitro derivative 1, adopt CDK2

binding poses with two distinct aniline orientations (Wang

et al., 2004a). Modeling shows that unfavorable intramolecular

interactions of the sulfonamide extensions in compounds 4, 5,

and 8–10 with the thiazole/thiazolone head groups force the

aniline rings to project toward the position occupied by Lys89 in

CDK2, resulting in unfavorable contacts. From the crystal struc-

tures of CDK7 and CDK9 it is apparent that the region around

Lys88-Lys89 (in the CDK2 context) is considerably more open in

CDK7, and especially in CDK9, due to the presence of the smaller

side chains of the corresponding residues (Glu99-Val100 and

Ala111-Gly112 in CDK7 and CDK9, respectively).
lsevier Ltd All rights reserved



Figure 5. Status of Key Cellular Proteins

Following Treatment with Compound 14
After exposure of A2780 cells to 14 (A) CTD phos-

phorylation of Ser-2 and Ser-5 of RNAP-II is signif-

icantly reduced after 3 hr. p53 levels have

increased and levels of the antiapoptotic protein

Mcl-1 have been reduced, while XIAP remains

fairly constant at early time points. There is no

reduction in phosphorylation of pRb at the 249/

252, 780, or 821 sites. After 24 hr treatment with

14 (B) both the transformed A2780 and untrans-

formed WI-38 cell lines show a similar primary

response. There is a reduction in phosphorylation

of the CTD of RNAP-II at Ser-2 and Ser-5, an

increase in p53, and a decrease in each of the

antiapoptotic proteins XIAP, Mcl-1, and survivin.

Only A2780 cells show cleavage of PARP,

however, suggesting that apoptosis has been initi-

ated in these cells. See also Figure S3.
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Cellular Mode of Action of Compound 14
In Vitro Antiproliferative Activity

On the basis of its in vitro kinase potency, selectivity, and phar-

maceutical properties, a detailed study of the cellular mode of

action of 14 was carried out. It was screened against a panel

of human leukemia and solid tumor cell lines (Table S1C).

A broad spectrum of in vitro antitumor activity was observed,

with an average IC50 value of 0.3 mM. There was no selectivity

toward cell line types based on p53, p21, p16, or pRb status.

Selectivity toward transformed versus untransformed cell lines

was observed: 14 was 20- and 40-fold less potent against fetal

lung fibroblast lines WI-38 and IMR-90, respectively, compared

with the tumor cell lines examined.

RNAP-II CTD Phosphorylation and p53 Induction

In accordance with the biochemical enzyme inhibition data

showing 14 to be a potent inhibitor of CDK7 and CDK9, the

phosphorylation of both Ser-2 and Ser-5 of the RNAP-II CTD

was reduced significantly after 3 hr in A2780, with WI-38 cells

showing a similar response at 24 hr (Figure 5). Protein levels of

p53 were induced at early time points since p53 is regulated at

the translational level, but p21 levels, normally upregulated by

p53-dependent transcription, did not rise due to inhibition of

transcription by 14.

Reduction of Antiapoptotic Protein Levels

At 3 hr, Mcl-1 levels were reduced in A2780 cells. After 24 hr,

A2780 andWI-38 cells both showed a reduction in antiapoptotic

proteins XIAP,Mcl-1, and survivin (Figure 5). A2780 cells showed

a greater reduction in levels of survivin and XIAP than WI-38

cells. Both cell lines showed reductions in Mcl-1. It is interesting

to note that A2780 cells possess much greater levels of Mcl-1

than WI-38 in untreated samples.

Selective Induction of Apoptosis in Transformed Cells

Apoptosis is induced in A2780 cells, as detected by caspase-3/7

assay, at concentrations of 0.31 mM 14 and above. WI-38 cells,

however, were completely insensitive even at 10 mM 14 (Fig-

ure 3A), despite showing sensitivity to mechanistically unrelated

kinase inhibitor compounds. This result confirms the selectivity

for transformed cells seen in the MTT proliferation assay (Table

S1C). TUNEL analysis, in conjunction with DNA staining, showed

that 50% of cells were TUNEL positive after 24 hr with 2 mM 14
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(Figure 3B). These apoptotic cells were observed in all cell cycle

compartments, suggesting that this class of inhibitor causes cell

death at each stage of the cell cycle and does not lead to

a stage-specific cell cycle block. A reduction in the levels of anti-

apoptotic proteins occurred in both transformed (A2780) and

untransformed (WI-38) cell lines. However, PARP cleavage

(Figure5) only occurred in theA2780cell line, suggesting that anti-

apoptotic proteins may play a less important role in the untrans-

formed cells than in the oncogenically transformed cells.

Selective CDK9-Cyclin T Inhibition Also Induces

the Transcriptional-Type Response in Cells

Compounds 3, 10, and in particular, compound 9, showed

greater selectivity for CDK9 over CDK7. Figure 2 shows that at

the concentrations of compounds needed to induce cellular

cytotoxicity, the contribution of CDK7 inhibition is negligible.

From the screening cascade these compounds belonged to

class-1 and further analysis of key cellular proteins showed

a significant reduction in RNAP-II CTD Ser-2 phosphorylation,

a slightly weaker reduction in Ser-5 phosphorylation, an induc-

tion of p53, and a reduction in Mcl-1 levels after 3 hr exposure

in A2780 cells (Figure S3). These responses are consistent with

that shown by 14, an approximately equipotent CDK7 and

CDK9 inhibitor. Like 14, the CDK9-specific inhibitors 3, 9, and

10 induced apoptosis selectively in transformed cells (Table S2).

In Vivo Anti-Tumor Activity of Compound 14
Compound 14 was evaluated for in vivo antitumor activity using

a P388/0 murine leukemia survival model (Marsh et al., 1985).

When dosed twice daily for 10 days with 14, animals experi-

enced an increase in life span of 68%, 45%, and 36% at doses

of 30, 20, and 13 mg/kg/dose, respectively (p < 0.0001)

(Figure S2A). The treated animals suffered no weight loss

compared to animals receiving vehicle only and the maximum

tolerated dose (MTD) of 14 was not achieved in this experiment,

indicating a good therapeutic margin.

Compound 14alsodemonstrated antitumor activity in amurine

xenograft solid tumor model using the human colorectal

Colo-205 cell line. As a positive control 5-fluorouracil (5-FU),

the chemotherapy drug most commonly used in the clinic for

colorectal cancer, was included on an optimal intravenous
121, October 29, 2010 ª2010 Elsevier Ltd All rights reserved 1117
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dosing regimen at the MTD. The test compound 14 was admin-

istered by either the intraperitoneal (i.p.) or oral route (Fig-

ure S2B). When given at 50 mg/kg i.p. every day for 8 days, 14

produced a specific tumor growth delay of 10.5 days

(p < 0.05). Similarly, 14 was active and well tolerated when given

by the same schedule at 100 mg/kg p.o., resulting in a tumor

growth delay of 7 days (p < 0.05). On the last evaluable day the

tumor versus control ratios (T/C) were below 40% at the top

dose by both administration routes. By comparison, 5-FU was

considerably less active at its MTD of 50 mg/kg, given every

4 days for four treatments, and only yielded a tumor growth delay

of 1 day.

DISCUSSION

The work presented here explores the biomedical rationale for

the development of pharmacological inhibitors of transcription.

This effect is achieved with kinase inhibitors that target predom-

inantly CDK9-cyclin T1 and is further explored by studying the

effects of simultaneously inhibiting CDK7 and CDK2, additional

CDKs thought to be responsible for the regulation of RNAP-II

activity through phosphorylation of its CTD.

The current model of RNAP-II regulation postulates

a sequence in which CDK7 first phosphorylates CTD Ser-5

residues as part of transcription initiation (Sims et al., 2004).

Subsequent dephosphorylation of Ser-2, and then phosphoryla-

tion of Ser-2 residues by CDK9 (Zhou et al., 2000) is necessary

for the transition to RNA elongation (Price, 2000). Detailed

analysis of CTD phosphorylation by CDKs 7, 8, and 9 (Ramana-

than et al., 2001) have shown all three kinases to be capable of

phosphorylating Ser-5, but not Ser-2, of a CTD peptide in vitro,

despite evidence of in vivo phosphorylation at both Ser-2 and

Ser-5 residues. This seems to correlate with the concept of

stepwise phosphorylation, with Ser-5 phosphorylation being

the initiating event, while Ser-2 becomes phosphorylated only

after other criteria are met. Another study has highlighted the

nonuniformity of CTD phosphorylation, showing that each of

the three kinases produces different patterns of phosphorylation

of the CTD, but that only CDK7 efficiently produces hyperphos-

phorylated substrates (Pinhero et al., 2004). These studies

suggest that CTD phosphorylation is regulated in a complex

manner, with changes in substrate specificity depending upon

the transcriptional state of the complex and the accessibility of

different regions of the CTD.

Each of our transcriptional-type inhibitor compounds is

capable of reducing the phosphorylation of Ser-2 and Ser-5 of

the CTD of RNAP-II. There is a differential response in the phos-

phorylation state of Ser-2 and Ser-5, with quicker and more

pronounced dephosphorylation of Ser-2 over Ser-5. At this stage

we cannot conclusively demonstrate kinase specificity for each

site as this difference may be due to different phosphatase activ-

ities or site accessibility. However, compounds 3, 9, and 10, that

we postulate to possess no appreciable CDK7 activity at the

concentrations used to elicit a cytotoxic IC50 response (Figure 2),

can still cause a reduction in Ser-2 phosphorylation after 3 hr and

initiate events that lead to the subsequent induction of

apoptosis. These data lend support to the hypothesis of CDK9

targeting the Ser-2 site of RNAP-II and that inhibition of CDK9

is sufficient to inhibit transcription.
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The transcriptional activity of RNAP-II is required in all cells

and inhibition of RNAP-II may thus not immediately present itself

as a rational target for cancer therapeutics. However, trans-

formed cells have a greater requirement for enhanced transcrip-

tional activity. First, their increased rate of proliferation necessi-

tates increased protein production. Second, cells are genetically

predisposed to enter into programmed cell death upon onco-

genic stimulation, but a few may be able to transform into an

apoptosis-resistant, rapidly proliferating state by a number of

means. One way of avoiding apoptotic death is the increased

production of antiapoptotic proteins in order to counteract the

presence of the proapoptotic proteins induced by the initial

transforming event (Koumenis and Giaccia, 1997). The cancer

cell achieves a new balance, but at the expense of continuously

increased production of these antiapoptotic proteins, many of

which have short half-lives at both the mRNA and protein levels.

The fully transformed cell is thus committed to a strategy of

increased protein production and therefore increased transcrip-

tion in order to maintain the status quo of cell survival over pro-

grammed cell death.

The increased production of antiapoptotic proteins in trans-

formed cells is well documented (Liston et al., 2003; Schimmer,

2004). For example, elevated levels of survivin, XIAP, cIAP1, and

cIAP2 have been shown in human prostate cancers and in pros-

tate tissues from transgenicmice expressingSV40 large T antigen

(Krajewska et al., 2003). Survivin is highly expressed in many

transformed cells but is rarely detected in normal adult tissues

(Zangemeister-Wittke and Simon, 2004). Mcl-1 is a member of

the anti-apoptotic Bcl-2 family (Cory et al., 2003) whose expres-

sion decreases when cells undergo apoptosis (Iglesias-Serret

et al., 2003). Increased Mcl-1 protein levels have been reported

in a number of tumor samples (Khoury et al., 2003; Song et al.,

2005), and a difference in expression may be observed in the

control lanes of A2780 and WI-38 (Figure 5).

Weshow that asa result of decreased transcription, the expres-

sion levels of a number of highly expressed, short half-life, antia-

poptotic proteins suchasMcl-1, survivin, andXIAPdecline rapidly

in both transformed and untransformed cell lines. We demon-

strate that although the primary events of dephosphorylation of

RNAP-II, induction of p53, and downregulation of antiapoptotic

proteins, is consistent across transformed and untransformed

lines, the ultimate fate of the cell is governed by its reliance

upon antiapoptotic proteins for continued survival. This results

in a selective apoptotic response, demonstrated by strong induc-

tion of caspase-3/7 activity, PARP cleavage, and appearance of

TUNEL-positive cells in transformed cell lines only.

The induction of p53, a protein whose expression is tightly

regulated at the posttranslational level by its association with

Mdm2, itself a short half-life protein that is affected by reduced

transcriptional activity, may contribute to the apoptotic

response. p53 may translocate to the mitochondria and induce

apoptosis through its direct interaction with, and activation of

proapoptotic proteins such as Bax (Arima et al., 2005). However,

as we see no differential sensitivity between p53 wild-type and

p53 mutant or null cells in our cytotoxicity assays and have

demonstrated that the response is not part of a DNA damage

response, we conclude that this effect is not integral to

compound mode of action and we simply utilize this induction

as part of our screening cascade. The increase in p53 levels is
lsevier Ltd All rights reserved
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not accompanied by increased p21 levels (a protein normally

regulated by p53 activity), a response in keeping with transcrip-

tional inhibition.

SIGNIFICANCE

The work described here highlights our current under-

standing of transcriptional-type CDK inhibitors and demon-

strates how this knowledge can be adapted to provide an

efficient screening cascade for the identification of such

compounds. We have profiled a number of compounds

with the ability to reduce the phosphorylation of Ser-2 and

Ser-5 of the CTD of RNAP-II through inhibition of CDK9-cy-

clin T and CDK7-cyclin H and selectively kill transformed

cells as a result of this inhibition. Our work shows that

although both transformed and untransformed cells show

a similar reduction in antiapoptotic proteins due to inhibition

of RNAP-II CTD phosphorylation, untransformed WI-38 lung

fibroblasts do not undergo apoptosis, thus demonstrating

a differential response to the downstream events that cause

transformed cells to undergo apoptosis through the cas-

pase pathway. In vivo experiments have also demonstrated

a good tolerance for compound 14 and significant increases

in life span and antitumor activity in mouse models. We thus

conclude that an untransformed cell, with intact check-

points, low oncogenic stress, and lower levels of apoptotic

proteins may have a significant tolerance toward transient

inhibition of RNAP-II activity, whereas the equivalent trans-

formed cell would be much more susceptible to this type

of inhibition and undergo a caspase-induced apoptotic

death.

EXPERIMENTAL PROCEDURES

Synthesis and Compound Characterization

Preparation of [4-(2-amino-4-methyl-thiazol-5-yl)-pyrimidin-2-yl]-(3-nitro-

phenyl)-amine (1) was described (Wang et al., 2004a). Compounds 2–14

were prepared in the same manner. Details are provided as Supplemental

Experimental Procedures.

Cell-Based Assays

Mitotic Index Assay

MI was determined by an automated fluorescence microscopy 96-well plate

assay using the Cellomics Arrayscan Mitotic Index HitKit protocol (Cellomics

Inc.). In brief, cells were plated at 104 cells per well and incubated for 18 hr

at 37�C. Test compounds were added and cells were incubated for the appro-

priate time before a 15 min fixation in 3.7% formaldehyde in PBS. Cells were

permeabilized in PBS with 0.2% Triton X-100 for 15 min, washed, and incu-

bated with a primary antibody that specifically recognizes a mitotic epitope

(rabbit anti-phosphoserine-10 histone-H3, Upstate 06-570). After incubation

with a secondary FITC-conjugated anti-rabbit antibody and Hoechst 33258

dye, cells were washed and analyzed using the Cellomics Arrayscan II auto-

mated fluorescent microscopy system to detect nuclear fluorescent staining.

Data for 2000 cells per well were collected and the Cellomics mitotic index

algorithm used to calculate mitotic index (MI; percentage of cell nuclei stained

with the mitosis-specific antibody versus total cell nuclei stained with Hoechst

33258 dye). A similar assay was carried out for DNA damage by substituting

a mouse antibody specific for the DNA damagemarker histone H2AX (Upstate

17-327A) as the primary antibody and FITC-conjugated anti-mouse antibody

as secondary antibody.

p53 Stabilization Assay

Cells were plated at 104 cells per well and incubated for 18 hr at 37�C. Test
compounds were added and cells were incubated for the appropriate time
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before a 3 min fixation in cold (�20�C) 50:50 v/v methanol/acetone. The fixed

cells were dried briefly then washed with PBST (PBS, 0.1% Triton X-100) and

incubated with primary CM-1 rabbit anti-human p53 antiserum (Midgley et al.,

1992) diluted 1:1,000. After incubation with a secondary Alexa Fluor 488 goat

anti-rabbit antibody (Molecular Probes, A11008) and Hoechst dye, the cells

were washed and analyzed using the Cellomics Arrayscan II automated fluo-

rescent microscopy system to detect nuclear fluorescent staining. Data for

2000 cells per well were collected and the Cellomics mitotic index algorithm

used to calculate percentage of cell nuclei stained with p53-specific antibody

versus total cell nuclei stained with Hoechst.

MTT Cytotoxicity Assays

Standard MTT (thiazolyl blue; 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetra-

zolium bromide) assays were performed after 72 hr treatment with test

compounds (Haselsberger et al., 1996).

Determination of Apoptosis

Apoptosis was determined by either a terminal deoxynucleotidyl transferase-

mediated nick end labeling (TUNEL) assay (ApoDirect BD), following

manufacturer’s instructions, or by caspase-3/7 assay (Caspase-Glo 3/7 assay,

Promega), following manufacturer’s instructions, with cells seeded at 10,000

per well of a 96-well plate in a total volume of 100 ml medium per well. Assays

were performed 24 hr after test compound addition. Detection reagent (100 ml)

was added directly to each 100 ml sample and readings were taken after

a further 30 min incubation at room temperature.

Western Blot Analysis

Total protein cell lysates (10 mg) were run on SDS-PAGE (4%–12% gradient)

gels (Novex) under reducing conditions. The separated proteins were trans-

ferred to membranes and were probed with antibodies specific for pRb (BD),

249/252 pRb (BioSource), RNAP-II, RNAP-II Ser-2, RNAP-II Ser-5 (Covance),

p53 (Oncogene ab-6), p21, PARP, Mcl-1 (Santa Cruz), XIAP, survivin (Novus),

and actin (Sigma).

In Vitro Kinase Assays

Details for the cloning, expression, and purification of His-tagged CDK9/cyclin

T1 are provided as Supplemental Experimental Procedures.

Kinase Assays

CDK and other kinase assays were carried out as previously described (Wang

et al., 2004a). IC50 values were calculated from ten-point dose-response

curves and apparent inhibition constants (Ki) were calculated from the IC50

values and appropriate Km (ATP) values for the kinases in question (Cheng

and Prusoff, 1973).

Pharmacology

Screening, biopharmaceutical profiling, PK determinations, and evaluation of

anti-tumor efficacy of test compounds are described in the Supplemental

Experimental Procedures.

ACCESSION NUMBERS

The coordinates of the X-ray crystal structures of compounds 11 and 14 in

complex with CDK2 have been deposited with the PDB (www.rcsb.org) under

accession codes 2XMY and 2XNB.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and three tables and can be found with this article online at

doi:10.1016/j.chembiol.2010.07.016.

Received: March 6, 2010

Revised: July 15, 2010

Accepted: July 20, 2010

Published: October 28, 2010

REFERENCES

Arima, Y., Nitta, M., Kuninaka, S., Zhang, D., Fujiwara, T., Taya, Y., Nakao, M.,

and Saya, H. (2005). Transcriptional blockade induces p53-dependent
121, October 29, 2010 ª2010 Elsevier Ltd All rights reserved 1119

http://www.rcsb.org
http://dx.doi.org/doi:10.1016/j.chembiol.2010.07.016


Chemistry & Biology

Transcriptional CDK Inhibitors
apoptosis associated with translocation of p53 to mitochondria. J. Biol. Chem.

280, 19166–19176.

Barriere, C., Santamaria, D., Cerqueira, A., Galan, J., Martin, A., Ortega, S.,

Malumbres, M., Dubus, P., and Barbacid, M. (2007). Mice thrive without

Cdk4 and Cdk2. Mol. Oncol. 1, 72–83.

Baumli, S., Lolli, G., Lowe, E.D., Troiani, S., Rusconi, L., Bullock, A.N., Debrec-

zeni, J.E., Knapp, S., and Johnson, L.N. (2008). The structure of P-TEFb

(CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphoryla-

tion. EMBO J. 27, 1907–1918.

Brown, N.R., Noble, M.E., Endicott, J.A., and Johnson, L.N. (1999). The struc-

tural basis for specificity of substrate and recruitment peptides for cyclin-

dependent kinases. Nat. Cell Biol. 1, 438–443.

Byrd, J.C., Lin, T.S., Dalton, J.T., Wu, D., Phelps, M.A., Fischer, B., Moran, M.,

Blum, K.A., Rovin, B., Brooker-McEldowney, M., et al. (2007). Flavopiridol

administered using a pharmacologically derived schedule is associated with

marked clinical efficacy in refractory, genetically high-risk chronic lymphocytic

leukemia. Blood 109, 399–404.

Chen, R., Keating, M.J., Gandhi, V., and Plunkett, W. (2005). Transcription

inhibition by flavopiridol: mechanism of chronic lymphocytic leukemia cell

death. Blood 106, 2513–2519.

Cheng, Y.-C., and Prusoff, W.H. (1973). Relation between the inhibition

constant IK1) and the concentration of inhibitor which causes fifty per cent inhi-

bition (I50) of an enzymic reaction. Biochem. Pharmacol. 22, 3099–3108.

Cory, S., Huang, D.C.S., and Adams, J.M. (2003). The Bcl-2 family: roles in cell

survival and oncogenesis. Oncogene 22, 8590–8607.

Demidenko, Z.N., and Blagosklonny, M.V. (2004). Flavopiridol induces p53 via

initial inhibition of Mdm2 and p21 and, independently of p53, sensitizes

apoptosis-reluctant cells to tumor necrosis factor. Cancer Res. 64, 3653–

3660.

Fischer, P.M., and Gianella-Borradori, A. (2005). Recent progress in the

discovery and development of CDK inhibitors. Expert Opin. Investig. Drugs

14, 457–477.

Fuentes-Prior, P., and Salvesen, G.S. (2004). The protein structures that shape

caspase activity, specificity, activation and inhibition. Biochem. J. 384,

201–232.

Gewirtz, D.A. (1999). A critical evaluation of the mechanisms of action

proposed for the antitumor effects of the anthracycline antibiotics adriamycin

and daunorubicin. Biochem. Pharmacol. 57, 727–741.

Gojo, I., Zhang, B., and Fenton, R.G. (2002). The cyclin-dependent kinase

inhibitor flavopiridol induces apoptosis in multiple myeloma cells through tran-

scriptional repression and down-regulation of Mcl-1. Clin. Cancer Res. 8,

3527–3538.

Gomes, N.P., Bjerke, G., Llorente, B., Szostek, S.A., Emerson, B.M., and Es-

pinosa, J.M. (2006). Gene-specific requirement for P-TEFb activity and RNA

polymerase II phosphorylation within the p53 transcriptional program. Genes

Dev. 20, 601–612.

Griffiths, G., Midgley, C., Grabarek, J., Cooper, M., Glover, D., Ingram, L.,

Jackson, W., Meades, C., Mezna, M., O’Boyle, J., et al. (2004). Identification

and characterization of kinase inhibitors that inhibit CDK2, CDK7 and CDK 9

activities, induce p53 and result in reduced proliferation and induction of

apoptosis of human tumor cells. Proc. Am. Assoc. Cancer Res. 45, 837, Abs.

Griffiths, G., Scaerou, F., Midgley, C., McClue, S., Tosh, C., Jackson, W., Mac-

Callum, D., Wang, S., Fischer, P., Glover, D., and Zheleva, D. (2008). Anti-

tumor activity of CYC116, a novel small molecule inhibitor of Aurora kinases

and VEGFR2. Proc. Am. Assoc. Cancer Res. 49, 5644, Abs.

Harper, J.W., and Elledge, S.J. (1998). The role of Cdk7 in CAK function,

a retro-retrospective. Genes Dev. 12, 285–289.

Haselsberger, K., Peterson, D.C., Thomas, D.G., and Darling, J.L. (1996).

Assay of anticancer drugs in tissue culture: comparison of a tetrazolium-based

assay and a protein binding dye assay in short-term cultures derived from

human malignant glioma. Anticancer Drugs 7, 331–338.

Hirose, Y., and Ohkuma, Y. (2007). Phosphorylation of the C-terminal domain

of RNA polymerase II plays central roles in the integrated events of eucaryotic

gene expression. J. Biochem. 141, 601–608.
1120 Chemistry & Biology 17, 1111–1121, October 29, 2010 ª2010 E
Iglesias-Serret, D., Pique, M., Gil, J., Pons, G., and Lopez, J.M. (2003). Tran-

scriptional and translational control of Mcl-1 during apoptosis. Arch. Biochem.

Biophys. 417, 141–152.

Joshi, K.S., Rathos, M.J., Joshi, R.D., Sivakumar, M., Mascarenhas, M., Kam-

ble, S., Lal, B., and Sharma, S. (2007). In vitro antitumor properties of a novel

cyclin-dependent kinase inhibitor, P276-00. Mol. Cancer Ther. 6, 918–925.

Karaman, M.W., Herrgard, S., Treiber, D.K., Gallant, P., Atteridge, C.E., Camp-

bell, B.T., Chan, K.W., Ciceri, P., Davis, M.I., Edeen, P.T., et al. (2008). A quan-

titative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132.

Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R.W.

(1991). Participation of p53 protein in the cellular response to DNA damage.

Cancer Res. 51, 6304–6311.

Khoury, J.D., Medeiros, L.J., Rassidakis, G.Z., McDonnell, T.J., Abruzzo, L.V.,

and Lai, R. (2003). Expression of Mcl-1 in mantle cell lymphoma is associated

with high-grade morphology, a high proliferative state, and p53 overexpres-

sion. J. Pathol. 199, 90–97.

Koumenis, C., and Giaccia, A. (1997). Transformed cells require continuous

activity of RNA polymerase II to resist oncogene-induced apoptosis. Mol.

Cell. Biol. 17, 7306–7316.

Krajewska,M., Krajewski, S., Banares, S., Huang, X., Turner, B., Bubendorf, L.,

Kallioniemi Olli, P., Shabaik, A., Vitiello, A., Peehl, D., et al. (2003). Elevated

expression of inhibitor of apoptosis proteins in prostate cancer. Clin. Cancer

Res. 9, 4914–4925.

Liston, P., Fong, W.G., and Korneluk, R.G. (2003). The inhibitors of apoptosis:

there is more to life than Bcl2. Oncogene 22, 8568–8580.

Lolli, G., Lowe, E.D., Brown, N.R., and Johnson, L.N. (2004). The crystal struc-

ture of humanCDK7 and its protein recognition properties. Structure 12, 2067–

2079.

Lu, W., Chen, L., Peng, Y., and Chen, J. (2001). Activation of p53 by roscovi-

tine-mediated suppression of MDM2 expression. Oncogene 20, 3206–3216.

MacCallum, D.E., Melville, J., Frame, S., Watt, K., Anderson, S., Gianella-Bor-

radori, A., Lane, D.P., and Green, S.R. (2005). Seliciclib (CYC202, R-roscovi-

tine) induces cell death in multiple myeloma cells by inhibition of RNA poly-

merase II-dependent transcription and down-regulation of Mcl-1. Cancer

Res. 65, 5399–5407.

Marsh, J.C., Shoemaker, R.H., and Suffness, M. (1985). Stability of the in vivo

P388 leukemia model in evaluation of antitumor activity of natural products.

Cancer Treat. Rep. 69, 683–685.

McInnes, C., Wang, S., Anderson, S., O’Boyle, J., Jackson,W., Kontopidis, G.,

Meades, C., Mezna, M., Thomas, M., Wood, G., et al. (2004). Structural deter-

minants of CDK4 inhibition and design of selective ATP competitive inhibitors.

Chem. Biol. 11, 525–534.

Michael, D., and Oren, M. (2003). The p53-Mdm2 module and the ubiquitin

system. Semin. Cancer Biol. 13, 49–58.

Michels, A.A., Nguyen, V.T., Fraldi, A., Labas, V., Edwards, M., Bonnet, F., La-

nia, L., and Bensaude, O. (2003). MAQ1 and 7SK RNA interact with CDK9/cy-

clin T complexes in a transcription-dependent manner. Mol. Cell. Biol. 23,

4859–4869.

Midgley, C.A., Fisher, C.J., Bartek, J., Vojtesek, B., Lane, D., and Barnes, D.M.

(1992). Analysis of p53 expression in human tumors: an antibody raised

against human p53 expressed in Escherichia coli. J. Cell Sci. 101, 183–189.

Pinhero, R., Liaw, P., Bertens, K., and Yankulov, K. (2004). Three cyclin-depen-

dent kinases preferentially phosphorylate different parts of the C-terminal

domain of the large subunit of RNA polymerase II. Eur. J. Biochem. 271,

1004–1014.

Price, D.H. (2000). P-TEFb, a cyclin-dependent kinase controlling elongation

by RNA polymerase II. Mol. Cell. Biol. 20, 2629–2634.

Radhakrishnan, S.K., and Gartel, A.L. (2006). A novel transcriptional inhibitor

induces apoptosis in tumor cells and exhibits antiangiogenic activity. Cancer

Res. 66, 3264–3270.

Ramanathan, Y., Rajpara, S.M., Reza, S.M., Lees, E., Shuman, S., Mathews,

M.B., and Pe’ery, T. (2001). Three RNA polymerase II carboxyl-terminal

domain kinases display distinct substrate preferences. J. Biol. Chem. 276,

10913–10920.
lsevier Ltd All rights reserved



Chemistry & Biology

Transcriptional CDK Inhibitors
Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998).

DNA double-stranded breaks induce histone H2AX phosphorylation on serine

139. J. Biol. Chem. 273, 5858–5868.

Schimmer, A.D. (2004). Inhibitor of apoptosis proteins: translating basic knowl-

edge into clinical practice. Cancer Res. 64, 7183–7190.

Shapiro, G.I., and Harper, J.W. (1999). Anticancer drug targets: cell cycle and

checkpoint control. J. Clin. Invest. 104, 1645–1653.

Sims, R.J., Mandal, S.S., and Reinberg, D. (2004). Recent highlights of RNA-

polymerase-II-mediated transcription. Curr. Opin. Cell Biol. 16, 263–271.

Song, L., Coppola, D., Livingston, S., Cress, D., and Haura, E.B. (2005). Mcl-1

regulates survival and sensitivity to diverse apoptotic stimuli in human non-

small cell lung cancer cells. Cancer Biol. Ther. 4, 267–276.

Wang, S., and Fischer, P.M. (2008). Cyclin-dependent kinase 9: a key tran-

scriptional regulator and potential drug target in oncology, virology and cardi-

ology. Trends Pharmacol. Sci. 29, 302–313.

Wang, S., Meades, C., Wood, G., Osnowski, A., Anderson, S., Yuill, R.,

Thomas, M., Mezna, M., Jackson, W., Midgley, C., et al. (2004a). 2-anilino-

4-(thiazol-5-yl)pyrimidine CDK inhibitors: synthesis, SAR analysis, X-Ray crys-

tallography, and biological activity. J. Med. Chem. 47, 1662–1675.

Wang, S., Wood, G., Meades, C., Griffiths, G., Midgley, C., McNae, I.,

McInnes, C., Anderson, S., Jackson, W., Mezna, M., et al. (2004b). Synthesis

and biological activity of 2-anilino-4-(1H-pyrrol-3-yl)pyrimidine CDK inhibitors.

Bioorg. Med. Chem. Lett. 14, 4237–4240.
Chemistry & Biology 17, 1111–1
Wang, S., Griffiths, G., Midgley, C.,Meades, C., O’Boyle, J., Gibson, D.,Wood,

G., Grabarek, J., Cooper, M., Mezna, M., et al. (2005). Discovery and evalua-

tion of CDK transcriptional inhibitors as anti-cancer agents. Proc. Am. Assoc.

Cancer Res. 46, Abs. LB-110.
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